Dragon12-Light Trainer

For Freescale HCS12 microcontroller family

User’'s Manual for Rev. A, B board

Version 1.01

L A
Mbabad ot d 20 0 wrirwas

Dragoni12-Light
Test Mode

Table OF Contents

Chapter 1. INTFOAUCTION ..ottt ettt b et b e et b e et eb e e et b e e e e ebesrenea 4
L1 WEICOMIE ettt bbbt b bttt e et et e s 4

1.2 MC9S12DG256 features and MEemMOIrY MAPcccccrerererereieresieresese e sre e e e 5

1.3 On-board hardware fEAtUIES ... e 9

O @ o T1 g W U 7= T =SOSR P TSROSO 9
Chapter 2. QUICK STAIT ..ottt b e et b e et b et b e ene b e 12
2.1 INSTAIl SOFIWAIE ..eeeieeeeee bbb 12

2.2 GElING STAMEM ...oeeeiieieeeiee bbb bbb e 12

2.3 TESENAIAWAIE ..ot bbbttt b e 14
Chapter 3. SOftware DESCIIPIION ..ottt et 15
3.1 Bootloader and D-BUGIL12 MONITOTccooiiieiriiieiriieeresie et 15

311 EVB MOUE ..ottt b et 15

3.1.2 Jump to EEPROM MOAEoouiiiiiiiciieeeee et 16

3.1.3 BDM POD MOGE ...ttt 16

3.1.4 BOOtIoAder MOAEccoiiiiiiiiieieee bbb 20

3.2 Making asimple assembly program in RAM ... 21

3.3 Software deVEIOPMENT ..o bbb 23
Chapter 4. Hardware DESCIIPLIONS ...c.ooiiiiiie ittt s e e 24
4.1 LEDS it h et e e e e aae e s reeaar e e sareenare e snreennreeaa 24

4.2 DIP switch and pUSHBULIONS ..o e 24

4.3 7-Segment LED MUILIPIEXING ..ooiieiiiiieeee e e 24

R Q=Y = Lo PSPPSR 26

R I O B o [] o SO 27

R I 4141 4 1= o 0T | PSPPSR 28

4.7 Dual Digital-to-Analog ConVerter (DACS)cccccerererereseseseeseeseese e e sesseeseeseeseeseesees 28

S 4 T=T= 1Y S 28
4.9 Dual SCIcoOmMMUNICAtION POIS ..cveieiicieieeieceeeese sttt ere e e e eaeseenes 28
4.10 EXternal SPIINTEITACE ... 29
4.11 EXternal IPCINtErfACE ...ccceviveerieieiceiseee sttt 29
412 RGB LED ..ot e e n e e 29
T N 0T 0 0] o1 Y= 4] T TS 29
Chapter 5. CodeWarrior and Serial MONITOTcccoviviieeieieeiese e ree et e e e e see e 31
(O g =T o) (=1 S I I oo o [S 32
(O g F= o) (=T SR Y o o 1= o o |G 33
7.1 D-BUQL2 ULIlIY FOULINES ..oeeeiecee ettt sttt e st et snnas 33
7.2 INTErrupt VECION tADIESooeeeece ettt 34

Note: For users who will use CodeWarrior IDE with serial monitor:

This manual is written for the board that is pre-installed with bootloader and D-Bugl2
monitor. If you ordered the board with Freescale serial monitor for CodeWarrior, the board would be pre-
installed with the serial monitor and a factory test program. The software installation on the page 12 is not
needed. Once the serial monitor is installed, the board will not work with AsmIDE or other terminal
emulation programs.

The state of the left switch of the 2-position DIP switch (SW7) is tested by the serial monitor for selecting
RUN or LOAD mode during power up or reset, and the 8 port B LED indicators will light up from right to
left and the speaker will chirp once to indicate that the serial monitor is functioning. If the left switch is
placed in the "LOAD" mode (the "low" position) the monitor will wait for a command from a PC. If the left
switch is placed in the "RUN" mode (the "up" position) the port B LED indicators will light up again from
left to right to indicate that the program execution is diverted to the user code (the factory test program).

The left DIP switch of SW7 has been set in the “up” position as a factory default setting for running the test
program.

The CodeWarrior communicates with Freescale serial monitor only in LOAD mode and so in order to
interface with the CodeWarrior you have to place the left switch in the “low “position”. The port B LED
indicators will light up from right to left and the speaker will chirp once when the board is powered up.

If your board does not communicate with CodeWarrior, the first thing you should check is that if the left
DIP switch of the SW7 is in the LOAD mode (in the "low" position).

Chapter 1. Introduction

1.1 Welcome

Thank you very much for purchasing our Dragon12-Light trainer. The Dragon12-Light trainer is a low-cost,
feature-packed training board for the Freescale HCS12 microcontroller family. It is compatible with the
Freescale 9S12DP256EVB board and other similar development boards on the market today, but it also
incorporates many on-board peripherals that make this board a popular trainer in universities around the
world.

For engineers, it is a convenient prototype system suitable for designers who want to rapidly develop and
prototype HCS12 applications. For students, it can not only to be used as a general trainer for freshman
and sophomore students, but also as a versatile platform for senior projects as well. The new features of
the Dragon12-Light board create a new potential for students at every level.

The Dragon12-Light trainer kit comes with the following items:

Dragon12-Light board

Software and User manual downloadable from our web site

A 6 foot USB type B cable

9V, 500mA switching power supply AC adapter for North America customers only.

APLODPRE

If you miss any part of the kit, please contact sales@EVBplus.com or call 630 283-0321 for help.

The new Dragon12-Light board is fully backward compatible to the Dragon12-Plus2 board. Most
programs written for the Dragon12-Plus2 board will run on the new Dragon12-Light board without
modifications.

Please carefully examine the default jumper settings before turning on the board:

1. The J1 should have a jumper for LCD backlight.

2. The J26 should have a jumper installed on the two top pins labeled with “PT5”, so the speaker will be
driven by PT5. The speaker can be driven by timer (PT5) or PWM (PP5) or DAC. It defaults for PT5.
Without a jumper installed on J26 the speaker won’t sound.

3. The J41 should have a jumper installed on the two lower pins, so the SCIO receives signal
from USB port.

4. The J42 should have two jumpers installed vertically on the four upper pins, so the USB
interface is connected to SCIO0. The AsmIDE or CodeWarrior only works with SCIO.

If these two jumpers are installed on the four lower pins and the jumper on J23 in the two top pins
labeled with “USB” then the USB interface is connected to SCI1.

The specification of the switching power supply AC adapter is:
DC input: 110V-240V
DC output: 2\
Current rating: 500mA
Type of plug: 2.1mm female barrier plug, center positive

mailto:sales@EVBplus.com

1.2 MC9S12DG256 features and memory map:

The Dragon12-Light board comes with the MC9S12DP256CCPV or the MC9S12DG256CVPE installed.
The MC9S12DG256 is a replacement for the MC9S12DP256 since the latter has been discontinued by
Freescale. The only difference between DG256 and DP256 is the number of CAN ports. The DG256 has
2 CAN ports, but the DP256 has 5 CAN ports. Other than the different number of CAN port these two
microcontrollers have the same features. If you don't use more than 2 CAN ports these two chips are
identical and all datasheets and manuals for the DP256 can be used for the DG256.

If your application that needs more than two CAN ports please contact us at sales@evbplus.com and we
may be able to ship the board installed with the DP256.

The MC9512DG256 microcontroller consists of a powerful 16-bit CPU (central processing unit), 256K bytes
of flash memory, 12K bytes of RAM, 4K bytes of EEPROM and many on-chip peripherals.

The main features of the MC9S12DG256 are listed below:

Powerful 16-bit CPU

256K bytes of flash memory

12K bytes of RAM

4K bytes of EEPROM

SCl ports

SPI ports

CAN 2.0 ports

[2C interface

8-ch 16-bit timers

8-ch 8-bit or 4-ch 16 bit PWM

16-channel 10-bit A/D converter

Fast 25 MHz bus speed via on-chip Phase Lock Loop
BDM for in-circuit programming and debugging
112-pin LQFP package offers up to 91 I/O in a small footprint

mailto:sales@evbplus.com

$0000
30400

$1000

$4000
TA000
$7FFF
£8000
fa10T0]8]
EXTERN
$BFFF
$C000
SCO00
SFFFF
$FFO0
VECTORS VECTORS $FFFF
SFFFF
EXPANDED* MNORMAL SPECIAL

SINGLE CHIP SINGLE CHIP

* Assumning that a 0" was drivan amta port K bit 7 during MCL
i5 reset into normal expandad wide or narw mode,

Fig 1-1: MC9S12DG256 Memory map

REGISTERS

(Mappable to any 2k Block
within the first 32K)

4K Bytes EEPROM
{Mappable to any 4K Block)

12K Byles RAM
(Mappable to any 18K
and alignable to top or
bottom

16K Fixed Flash

Page $3E = 62

(This is dependant on the
state of the ROMHM bit)

16K Page Window
16 x 16K Flash EEPROM

pages

16K Fixed Flash
Page $3F =63

BDM
(if active)

— VEH |+ VAR |4—VAH
| 256K Byle Flash EEPROBM | ATDO VAL ATDA VAL [=—vAL
VODA [-e——— VDDA |-—VDDA
| 12K Byte RAM | VESA [— VESA |=—VESA
ANOD - FADDD ANG | |=—PaD0E
| 4K Byte EEPROM | AMA - Ba00d AN |- -=— PADDD
ANZ ~—FAD02 ANZ |- ~=—PADIO
VDDA — AN3 & |=—raD03 ANZ |- = | w—PAD
VEEE—h AN = |-.—Ea0ns ANa |w— L |w—PADIZ
WHEGER —== \,.'Dltage Hegulamr ANS - 00 ANS | -—] - PAD1S
YOO 2 e AhE =—PA00E ANE |- -=—PAD14
WES1 2 - ANT -—FATNT ANT |— |w—PaD1S
Single-wira Background PIXD = -+ PKO | XADDR14,
BKGD =+ 7T R Modula CPU12 PPAGE e =+ PK1 | XADDR15!
FC e P2 fewl o |, |== PK2 , XADDA1S,
st | Gk drid PIX3 |=| 5 = |==PK3 | XADDR17:
; Reset = Plxd [S -+~ PK4 ' XADDA1S
vesPLL = PLL Genaratian Peariodic Intermupt PIXG |4 it PHE: K.M:IDFH'E:
EXTAL—w Moduie COR Walchdog il e gt !
HTAL == Clock Monilewr po—m—mv-ooro L LY L T oo
AESET == Broakpoinis [Lelncily o g [FTI
PEG—=[T |=|Ra 1002 [piall
PE! T
PE.E_-: :: B System Enhanced Capture 103 e E E [==FT2
PES ar|w |2 o | THTRE Integratian imer (0G4 (e [|0 e PT4
PE4 =n| B [D |- | EOLK Module [OIEE o b PTS
& (a [SIM) arerg o e FTE
BEs o ==| MODA 0T | s PT7
FES == - | BADDE
PET s | NOACCTRCLRS S0 AXD |- i SO
TEST—w[—— THD |- - P
SCH el WO et
I REREERREREREEREE: 10 | @ |5 |om 53
3 ME0 [#———— = Paa
Multiplexed Address/Data Bus e P E=1 Ll B o E
TEIEIiay Tiegient | o0 sl | [T
55 | - - PS7 £
DDRAA DDRB 1r vy 2
BOLC AxE |=—] e
PTA FTB (J1850) T¥0 |—w= @ . —_ T =
FEEELY PhP bbb | canp RN 8 I ==t H
O WM T DN S M OD WA O THCAN —= I:E rl - P2 =1
FEFAERET FEERBERE oA |e— £ [~|F|Z|-=rma 1
Bt NS i THCAN |—=| & HEEHPM-# =
srezes2f EREZRAEE [cmen W s | o £
Cofpoooon Ooocooooo THCAN —a-(== == PME =
oI A o oF o S A ST of of of of of of o < FHNSHXCAN-_ = e - PMT §
Mutiplexed 2252599 53939923 ——Rrenrle £ =
deBus EEEEEEEE == e %
[WideBus g2 5238538 ZE3333338 [O nea £
R it S R T R R R &
i == HOID [-— PO i
|Mul1lplmdgggggggg KW =] 2 = |==rn =
(MarowBusZ £ 2 2 2223 e SOA KW || D [E |~ B ;
R e b e e ol SCL WY |- - PUT
Intermal Logic 2 5Y 1O Dinver 5 e e o
v iy =G b
il oy ¥ PR | KP1 [ae e PP
. 1 1 PWZ || KWP2 |- o == PP2
= P PIME (e [KWPS e iF O e PR3
AD Convarlar 5V & P || R o] 2 | e PRa
PLL 2.5V Valtage Regulater Reference Puins || wes |- a - PPE
VODPLL w— VDDA — PWWME KWPE [= PPE
WSSPLL —_|: WEEA FY7 KWERT |- = PPT
= = TS0 | s [FOWED | e PHO
Vot R latar 5V & 1O OS] (- 2 | T [——= PH1
ARG Pe Ao 5P SCK RWHZ el | e PH2
VSSR 55 KWHS [==| 76 E - PH3
s IS0 | aee | W4 [ae| D |5 e PHA
SPIz MAOS] | [WS = == PHES
SCH |--T—e | AW HE [- PHG
S5 |- | KWHT |- == PHT

Fig 1-2: MC9S12DG256 MCU block diagram

G R=]
£3
==
8 =
Zpes
[2R e] lm [&] ZZ=2Za 0 ==
=223 cmSZ3222 zz
= 5 O = m (&) Q== (]
=Ss== CEZEEESS gE
gaag SSZz=228E 22
I2E€5, O553585885-9.288558838
Bagglu §x§><é><§gm|3009§§3 =<
el EEEE LS 8agEEEREBE 5
EEEEQQ%EEEE:E2%m$$$m8m5%=s$m
o oo oC oo oo >adcoodododan >>
goooonnoonononononooonononn
ssiPwmakweapps |1 S S S EEEEECECERRERRIBSSRIBIVI L o
SCK1/PWM2/IKWP2/PP2 (] 2 O 831 VDDA
MOSI/PWM1/KWP1/PP1] 3 82[1 PAD15/AN15/ETRIG1
MISO1/PWMO/KWPO/PPO] 4 81— PADO7/ANOT/ETRIGO
XADDR17/PK3] 5 80[) PAD14/AN14
XADDR16/PK2[] 6 79[PADOG/ANOG
XADDR15/PK1]7 78] 1 PAD13/AN13
XADDR14/PK0 8 771 PADO5/ANOS
10CO/PTO 9 76— PAD12/AN12
10C4/PT1] 10 751 PADO4/ANO4
10C2/PT2] 11 74— PAD11/AN11
10C3/PTI] 12 73— PADO3/ANO3
vDD1 113 721 PAD10/AN10
VSs1] 14 MC9S12DP256B/MC9S12DT256 7117 PADO2/ANO2
10C4/PT4] 15 IMC9S12DJ256/MC9S12DG256 7010 PADOS/AN09
10C5/PTS] 16 691 PADO1/ANO1
10C6/PTE L] 17 68— PADOS/ANOS
I0CTIPTT |18 67| PADOO/ANOO
XADDR19/PK5] 19 66] 1 vsS2
XADDR18/PK4] 20 65— vDD2
KWJ1/PJ1] 21 64| PAT/IADDR15/DATA15
KWJO/PJO] 22 63|~ PA6/ADDR14/DATA14
MODC/TAGHI/BKGD (23 62— PAS/ADDR13/DATA13
ADDRO/DATAQ/PBO T 24 61]"] PA4/ADDR12/DATA12
ADDR1/DATA1/PB1{] 25 60— PA3/ADDR11/DATA11
ADDR2/DATA2/PB2] 26 59171 PA2/ADDR10/DATA10
ADDR3/DATA3/PB3 (] 27 581 PA1/ADDR9/DATAS
ADDR4/DATA4/PB4] 28 s < oy D e D B e e <t s D P 00 O < e s s 10 5T PAG/ADDRB/DATAS
LSS IIEEESRITILILLYERLBLIBRI RS
oot ooad
R L i R v R e B g o Y BT
&%&E—_E—_E;ﬂ-&&&%mom%x%ggm&m&&&&mn.
BN ES8WBFO—S > =W N Fad=ssSoERgg
ﬁﬁgzzzrgggd x Q @ IIIIG§|§|E
S58EEEESaw gEeER™ <
E2EGEZSGES 22532
888" gegxcg D20 D=
229 EEQ=E= ==

Signals shown in Bold are not available on the 80 Pin Package

Fig 1-3: MC9S12DG256 MCU pin assignments

1.3 On-board hardware features:

The Dragon12-Light board includes the following features:

On-board USB interface for SCI0 and SCI1
RGB color LED

DS1307 RTC with capacitor backup included for testing 1°C interface

[2C expansion port for interfacing external I°C devices

CAN port

SPI expansion port for interfacing external SPI devices

Dual 10-bit DAC for testing SPI interface and generating analog waveforms

Four digit 7-segment LED display for learning multiplexing technique
Eight LEDs

. Eight-position DIP switch

. Four push button switches

. Speaker to be driven by timer, or DAC or PWM signal for alarm or music applications.

. Dual H-Bridge motor driver controls two DC motors or one Stepper motor

. 5V Power-On LED indicators

. BDM-in connector to be connected with a BDM from multiple vendors for debugging

. BDM POD mode for programming other HCS12 boards. No extra hardware needed

. Abort switch for stopping program when program is hung in a dead loop

. Mode switch for selecting 4 operating modes: EVB, Jump-to-EEPROM, BDM POD and Bootloader
. 4 X 4 keypad

. X-Y-Z accelerometer interface or GP2-D12 distance measuring sensor interface for distance

measurement

. Potentiometer trimmer pot for analog input

. Temperature sensor

. Light sensor

. Female headers provide shortest distance (great for high speed applications!) from bread board to

every I/O pin of the MC9S12DG256

. PC board size is 7.7" X 4.8"

1.4 1/0O Pin Usage

Many I/O pins of the MC9S12DG256 on the Dragon12-Light board are used by on-board peripherals and it
seems that there are only a few of unused pins left for your circuits on the breadboard. Fortunately, it's
unlikely that all on-board peripherals will be used by one application program. So the 1/O pins on unused
peripheral devices can still be used by your circuits on the breadboard. For instance, if you don’t touch the
4x4 on-board keypad, the entire port A will be available to your circuits. If you don’'t use the LCD or just
unplug the LCD, the port K will be available as well. Port B drives LEDs, but if you ignore the status of the
LED, the port B can drive any other I/O devices on the breadboard. Each pin in port H reads a switch, but
it still can be used as an input for reading a TTL or CMOS output from your circuits.

Pin Name Pin # I/O Usage

PAO (output) Pin 57 Col_0 of keypad

PA1 (output) Pin 58 Col_1 of keypad

PA2 (output) Pin 59 Col_2 of keypad

PA3 (output) Pin 60 Col_3 of keypad

PA4 (input) Pin 61 Row_0 of keypad

PA5 (input) Pin 62 Row_1 of keypad

PAG6 (input) Pin 63 Row_2 of keypad

PA7 (input) Pin 64 Row_3 of keypad

PBO (output) Pin 24 LEDO or H-bridge

PB1 (output) Pin 25 LED1 or H-bridge

PB2 (output) Pin 26 LED?2 or H-bridge

PB3 (output) Pin 27 LED3 or H-bridge

PB4 (output) Pin 28 LED4

PB5 (output) Pin 29 LED5S

PB6 (output) Pin 30 LED6

PB7 (output) Pin 31 LED7

PEO (input) Pin 56 Abort switch SW8

PE1 Pin 55 not used

PE2 Pin 54 not used

PE3 Pin 53 not used

PE4 Pin 39 not used

PES5 Pin 38 not used

PEG6 Pin 37 not used

PE7 Pin 36 not used

PHO (input) Pin 52 DIP switch 1 or pushbutton switch SW5
PH1 (input) Pin 51 DIP switch 2 or pushbutton switch SW4 (input)
PH2 (input) Pin 50 DIP switch 3 or pushbutton switch SW3 (input)
PH3 (input) Pin 49 DIP switch 4 or pushbutton switch SW2 (input)
PH4 (input) Pin 35 DIP switch 5 (input)

PH5 (input) Pin 34 DIP switch 6 (input)

PH6 (input) Pin 33 DIP switch 7 (input)

PH7 (input) Pin 32 DIP switch 8 (input)

PJO Pin 22 not used

PJ1 Pin 21 not used

PJ6 Pin 99 SDA for DS1307(U11) or external 12C (J2)
PJ7 Pin 98 SCL for DS1307(U11) or external 12C (J2)
PKO (output) Pin 8 RS of LCD module

PK1 (output) Pin 7 EN of LCD module

PK2 Pin 6 DB4 of LCD module (bi-directional)

PK3 Pin 5 DBS5 of LCD module (bi-directional)

PK4 Pin 20 DB6 of LCD module (bi-directional)

PK5 Pin 19 DB7 of LCD module (bi-directional)

PK7 Pin 108 not used

Table 1-1: I/O pin usage list 1

10

Pin Name Pin # I/O Usage

PMO Pin 105 CANO

PM1 Pin 104 CANO

PM2 Pin 103 not used

PM3 Pin 102 not used

PM4 Pin 101 not used

PM5 Pin 100 not used

PM6 Pin 88 CS of LTC1661 (DAC)

PM7 Pin 87 Not used

PPO (output) Pin 4 Digit 3 of 7-segment display or EN12 of H-bridge
PP1 (output) Pin 3 Digit 2 of 7-segment display or EN34 of H-bridge
PP2 (output) Pin 2 Digit 1 of 7-segment display

PP3 (output) Pin 1 Digit 0 of 7-segment display

PP4 (output) Pin 112 Servo motor 1 or RGB LED

PP5 (output) Pin 111 Servo motor 2 or RGB LED

PP6 (output) Pin 110 Servo motor 3 or RGB LED

PP7 (output) Pin 109 Servo motor 4

PSO Pin 89 SCIO for PC communication, RECV

PS1 Pin 90 SCIO0 for PC communication, XMIT

PS2 Pin 91 SCI1 for user applications, RECV

PS3 Pin 92 SCI1 for user applications, XMIT

PS4 Pin 93 MISO for LTC1661, and external SPI (J10)

PS5 Pin 94 MOSI for LTC1661, and external SPI (J10)

PS6 Pin 95 SCLK for LTC1661, and external SPI (J10)

PS7 Pin 96 /SS for external SPI (J10)

PTO Pin 9 not used

PT1 Pin 10 not used

PT2 Pin 11 not used

PT3 (input) Pin 12 not used

PT4 (output) Pin 15 not used

PT5 (output) Pin 16 Speaker (output)

PT6 (output) Pin 17 BDMout reset (used in POD mode only)

PT7 Pin 18 BDMout data line (bi-directional, used in POD mode only)
PADO Pin 67 D-bugl12 mode select, SW7

PAD1 Pin 69 D-bugl2 mode select, SW7

PAD2 Pin 71 not used

PAD3 Pin 73 not used

PAD4 Pin 75 Light sensor (phototransistor Q1)

PAD5 Pin 77 Temperature sensor (U14, LM45)

PAD6 Pin 79 not used

PAD7 Pin 81 Trimmer pot VR2

PADS Pin 68 X axis input for Wytec accelerometer or ADC input for GP12D2
PAD9 Pin 70 Y axis input for Wytec accelerometer or ADC input for GP12D2
PAD10 Pin 72 Z axis input for Wytec accelerometer or ADC input for GP12D2
PAD11 Pin 74 not used

PAD12 Pin 76 not used

PAD13 Pin 78 not used

PAD14 Pin 80 not used

PAD15 Pin 82 not used

Table 1-2: 1/O pin usage list 2

11

Chapter 2. Quick Start

By default the Dragon12-Light board is pre-installed with the bootloader (Freescale AN2153.pdf) and the D-Bug12
monitor (Freescale DB12RG4.pdf). In chapters 2 and 3 the AsmIDE is used as the main software tool to develop
and debug assembly programs. If you prefer to use CodeWarrior IDE for program development and your board
is pre-installed, per your request, with the serial monitor (Freescale AN2548.pdf), skip the chapters 2 and 3 after
installing software from CD.

People often use different terminologies. In our product manuals, Download means to transfer a file from PC to
a development board, while Upload means to transfer a file from a development board to PC. Through out the
manual, left click means that you click the left button of the mouse and right click means that you click the right
button of the mouse.

2.1 Install software:

After downloading software from our web site, the installation is automated by double clicking on the
SETUP.BAT. It will create a folder named c:\Dragon12_Light\examples and copy all example program files
from the CD to c:\Dragon12_Light\examples

If the filename is only shown as SETUP, not SETUP.BAT, you should change a folder option of the Explorer
to show file extension. When a file's extension is hiding, it is hard to know what it is. To have your files to
be shown with extensions, click on the TOOL tab in Explorer menu, then click on folder options, then click
on view tab, finally un-check the item named ‘Hide extensions for knowing file types’.

After the software is successfully installed, you can make a shortcut to AsmIDE.exe on the desktop. It's
important to make a shortcut so that its target location is C:\Dragon12_Light, not c:\Windows\desktop or
other locations. First, right click the Start button, then left click “Explorer”, left click on C:\Dragon12_Light,
right click on AsmIDE.exe (an application program), left click “Send to” and finally left click “Desktop” (do
not click “COPY”). It will create an icon named “shortcut to AsmIDE” on the desktop and you can rename it
to Dragon12-Light. You can double check the target location by right clicking on the icon, then left click on
“properties”. You should see that the target location is C:\Dragon12_Light. If you want to make a shortcut
for AsmIDE on the Desktop, this is the correct way to do it. If you don't follow this method, your may have
a problem running your program. Never drag the AsmIDE.exe to the desktop folder.

The default setting of AsmIDE for the Dragonl2-Light board is created in a text file named
c:\Dragon12_Light\AsmIDE.ini. In the future if you get lost with all the changes, you always can copy this
file into the folder named c:\Dragon12_Light.

2.2 Getting Started (for the AsmIDE and D-Bug12 monitor firmware only)
To operate the Dragon12-Light board, follow steps1 through 5 below:

1. Make sure that the both DIP switches of SW7 must be set in the “LOW” positions for EVB mode, then
Plug the USB cable to the USB jack P1 on the upper left corner of the Dragon12-Light board. Plug
the other end of the USB cable into a USB port of your PC. After power up, the PB7-PB0 LEDs should
light up from left to right one at a time, the speaker should chirp once (If the chirp is too soft you can
remove the sticker on the speaker to increase the volume) and the LCD should display the following

message:
12

“ DRAGON12-Light ” ; you can display your name on LCD and see details

“D-Bug12 EVB MODE” ; at CDROM\examples\name_display\readme.txt

If it does not occur, make sure that the Power-On LED indicator is on. The PWR LED is on when VCC
(5V) is present.

To invoke the AsmIDE, you can right click the Start button, then left click “Explorer”, left click on
C:\Dragon12_Light and finally, double left click on AsmIDE.exe. If you have created a shortcut icon on
the desktop, just double click the AsmIDE icon on the desktop.

Warning note: In order to establish a reliable USB communication, always connect the Light
board to your PC's USB port first before invoking the IDE (CodeWarrior or AsmIDE), otherwise
the IDE may not be able to communicate with the Light. During a debugging session, if you
accidentally unplug the USB cable from the Light, you need to re-establish the USB
communication. The IDE will not recognize the Light again if you just simply plug the USB
cable back in.

To re-establish the USB communication you need to exit the IDE, then re-invoke it to re-
establish its communication with the Plus2 board. If this does not work, you need to restart
your PC. If the Restart does not solve your problem, the board may be defective or the D-Bug12
monitor may be corrupted..

The AsmIDE is simple and very easy to use. You only need to use three commands from the AsmIDE
for your HCS12 development work. Use the File command to edit your source code, the Build-
>Assemble command to assemble your source code, and the Build->Download command to download
an s19 file to the Dragon12-Light board.

In the View->Option->Terminal Window Options menu, set the COM port as 1 or 2 to match the COM
port number that is assigned to the USB port by Device Manager in control panel. Also, set the COM
port options at 9600, N,8,1, and check the “enable the terminal window”.

After reset, the D-Bug12 monitor defaults baud rate at 9600 and and Hyperbaud function is disabled. If
Hyperbaud function is enabled, the Hyperbaud toolbar button sends the BAUD 57600 command to the
D-Bug12 monitor, and then it also changes the serial port to the 57600 baud rate. IMPORTANT: When
you reset your board it will go back to 9600 baud and you will see characters ‘aaaaaaaaaa’ on the
screen. You will need to press the Hyperbaud button once to return AsmIDE to 9600 baud, and press
it again to get 57600 baud. To stay at the 57600 baud all the time, you need to press the Hyperbaud
button twice after every reset. The Hyperbaud function is disabled by default and it should only be used
by an experienced user, not a beginner.

You can program text values for function keys to be sent from the terminal window. Some function keys
are pre-programmed, but you can change it any time in configuration options (View->Options-
>Terminal Func Keys).

In the View->Option->Assembler menu, make sure that the chip family is 68HC12, not 6BHC11. If you
would like to use your own assembler, you can replace the as12.exe with the name of your own
assembler.

The screen is divided into two windows. The top window is for editing your source code and the bottom
window is shared by the message window and the terminal window.

13

If the terminal options are set correctly, you should see the following prompt every time the reset button
on the Dragonl12-Light board is pressed. If you do not see this, the bottom window may be set for
message window. Sometime it’s a little confusing when terminal window is disabled and the message
window does not display what you have typed. In order to enable terminal window you have to click
the terminal button in the bottom window to enable the terminal window display, then move the cursor
to any location in the terminal window and click the left button on the mouse. After seeing a solid block
cursor flashes, press the <Enter> key and it will enable the terminal window.

D-Bug12 v4.0.0b32

Copyright 1996 - 2005 Freescale Semiconductor
For Commands type "Help"

>

2.3 Test Hardware:

To help users get up and running, the Dragon12-Light board comes with many fully debugged and ready-
to-run sample programs including source code. The hardware test program, test.asm, simultaneously scans
the keypad, plays a song, multiplexes the 4 LED seven segment display, changes display brightness by
adjusting the trimmer pot and detects an IR signal.

All sample programs must be run from RAM in EVB mode. In order to run the test program in EVB mode,
the both DIP switches of SW7 must be set in the “low” positions (the picture above the SW7 shows the
switch settings for 4 different modes).

The steps to run your first sample program are as follows:

1. Click the File button to open the test.asm from c:\Dragon12_Light\examples. After the test.asm is
loaded into the AsmIDE window, you can view instructions of how to test all hardware on the
Dragon12-Light board.

2. Click the Build button to assemble code and generate the test.s19 file. This is how you normally
generate an s19 file. You can omit this step, because the test.s19 is already on your hard disk.

3. Press the reset button on the board, you will see:

D-Bug12 v4.0.0b32

Copyright 1996 - 2005 Freescale Semiconductor
For Commands type "Help"

>

4. Type “LOAD?”, then hit <Enter> key.

5. Click the Build button. Select Download option and locate the file ‘test.s19’ for downloading. If it
prompts you with the “save changes?” message, you can ignore that message and click the “No”
answer.

6. After download is done, type “G 2000” and hit <Enter> key to run the test program.

All sample programs are developed in RAM. You can try to run a different example program later after you
have finished reading this manual. You should always press the reset button before downloading a new
program, because the new program may not work if an interrupt was enabled by a previous program.

All example programs are fully debugged, so the assembler won’t generate an error. If you have an error,
even a warning error, in your program, you must correct it before it can generate an s19 file.

14

Chapter 3. Software descriptions

3.1 Bootloader and D-Bug12 Monitor

If the MC9S12DG256 on the Dragon12-Light board is pre-loaded with bootloader and D-Bug12 monitor
firmware and it will operate in 4 different modes depending on the setting of the 2-position DIPswitch, SW7.
After power up or reset, the MC9S12DG256 will read the PADO and PADL1 to decide which mode to boot

up.

The bootloader (AN2153.PDF), the D-Bug12 reference guide (DB12RG4.PDF) and the MC9S12DG256
data book (MC9SDG256.PDF) are the most important documentations. They can be found online. The
HCS12 instruction set, register map and memory map can be found on page 26, 65 and 120 of the data
book, respectively.

The new D-Bugl2 V4.x is much different and much larger (about 60K) than old D-Bugl2 V2.x.
The $CO00-$EFFF are just a part of the monitor, In 16-bit S1 record they are $C000-$EFFF. In 24-bit S2
record, they are $FC000-FEFFF (ppage=$3F). Since the ppage register deals with the 16K window $8000-
$BFFF the addresses $C000-$FFFF are not affected by the ppage. The other part of the monitor is at
C0000-C87FF (16K window $8000-$BFFF when ppage=$30,$31 and $32). See details on page 20 of the
app note AN2153 or page 71 of the D-Bug12 v4 reference guide on the CD.

3.1.1 EVB mode: PAD1=0, PADO=0.

This is the standard debug environment running on the MC9S12DG256 for on-chip RAM or
EEPROM based code development. Using an IDE program to view and modify registers and
memory locations, you may set breakpoints, single step through programs, and assemble and
disassemble code as you would in a BUFFALO monitor based Freescale 68HC11 EVB. It gives you
12K RAM and 3K EEPROM to develop and debug your code. You must place your interrupt vectors
at $3E00-$3E7F, because real interrupt vector addresses are taken by bootloader, bootloader and
D-Bug12 monitor will redirect interrupts to the RAM interrupt vector table at $3E00-$3E7F.

After booting up in this mode, the LCD should display the following message:

“ DRAGON12-Light ”
“D-Bug12 EVB MODE”

and you should see the following message on PC screen:
D-Bug12 v4.0.0b32
Copyright 1996 - 2005 Freescale Semiconductor

For Commands type "Help"
>

Typing “help” then <Enter> will display a list of available commands.
In this mode, you cannot erase or program on-chip flash memory.

If the D-Bug12 monitor is erased, the LCD will display the following message after reset:

“ DRAGON12-Light ”
“D-Bug12 ERASED ”

15

3.1.2

313

You can use bootloader to re-program D-Bug12 monitor into flash memory.

Note: Some user may accidentally erase D-Bug12 monitor in bootloader mode, so it is important
to know how to re-program D-Bug12 monitor in bootloader mode.

Jump-to-EEPROM mode: PAD1=0, PADO=1

This mode enables the MC9S12DG256 to jump directly to the internal EEPROM at location $0400
upon reset.

This mode makes the MC9S12DG256 a replacement for the old 68HC811E2 microcontroller, but it
also gives you 3K EEPROM instead of 2K EEPROM with the 68HC811E2. The bus speed is 4MHz,
one half of the crystal frequency by default, the PLL function must be initialized by user’s code for a
higher bus speed, because the D-Bugl12 monitor firmware that boosts bus speed to 24 MHz is
bypassed. If you need to auto start your code upon reset, the procedure is available in the folder
named eeprom_programming.

After booting up in this mode, the LCD should display the following message:

“ DRAGON12-Light ”
“ JUMP TO EEPROM ”

BDM POD mode: PAD1=1, PADO=0

In this BDM POD mode, the D-Bug12 firmware acts as a master to access all target MCU resources
on the target board (another Dragon12-Light board) via the BDM port in a hon-intrusive manner. It
becomes a BDM that will have all the features that a standard BDM has in debugging the target
MCU. Also, it gains all the features a programmer has for programming the flash memory of the
MCU on the target board (another Dragon12-Light board).

To use the master board as a programmer, you heed a 6-pin ribbon cable to connect from the BDM
OUT of the master board to the BDM IN of the target board (make sure that the orientation of the
cable is correct). You don'’t have to provide the power to both boards, but only to one board. The
master board communicates to a PC COM port while the target board does not need to be connected
to a PC COM port.

After booting up in this mode, the LCD should display one of the following two messages:

If the D-Bug12 monitor is erased, the LCD will display the following message after reset:

“ DRAGON12-Light ”
“POD-Bug12 ERASED”

Otherwise it will display:

“ DRAGON12-Light ”
“ BDM POD MODE ”

and you should see the following message on PC screen:

16

Can't Communicate With Target CPU

1.) Set Target Speed (48000 KHz)
2.) Reset Target
3.) Reattempt Communication

4.) Erase & Unsecure
?

You first must set the target speed with the choice 1). After entering the first choice, you will be
prompted to enter the target speed. It's the crystal frequency, not the bus speed that is boosted up
by the on-chip PLL. After a reset, before the PLL is enabled, the target MC9S12DG256 is running
from the crystal frequency, not the PLL frequency. Enter 8000 for the target speed. After the correct
speed is entered, the master will try to communicate with the target board. If it's not successful, enter
choice 2) to reset the target board.

Note: The newer D-Bug12 monitor in POD mode may auto-detect the crystal frequency of a target
board, so most likely the step 1 may not be needed.

Can't Communicate With Target CPU

1.) Set Target Speed (8000 KHz)
2.) Reset Target

3.) Reattempt Communication
4.) Erase & Unsecure

?1

Enter Target Crystal Frequency (kHz): 8000

Can't Communicate With Target CPU

1.) Set Target Speed (8000 KHz)
2.) Reset Target

3.) Reattempt Communication
4.) Erase & Unsecure

?2

When the communication is established, you will see the following:

D-Bug12 v4.0.0b32
Copyright 1996 - 2005 Freescale Semiconductor
For Commands type "Help"

S>

You will notice that the debug prompt is “S>" in the POD mode, not just a “>” in the EVB mode. The
S> tells that this is the POD mode and the MC9S12DG256 on target (slave board) is stopped.
Sometimes the prompt could be a “R>" that means the target MCU is running. If you see the “R>",
just type “reset” then <Enter> to reset the target and it will come back to the “S>" prompt.

R>Reset <Enter>
S>

17

Note: The initial communication in POD mode does not always work smoothly and sometimes the
PC screen would only display an incomplete sign-on message. You need to re-start it all over again
by pressing reset buttons on both master board and target board, then press the Enter key on PC
keyboard. You cannot go to the next step until PC screen shows the prompt ‘s>’.

In order to program the flash memory, you have to erase it by using the FBULK command.

S>foulk <Enter>
S>

When the prompt “s>” returns, the FBULK command has already erased all of the flash memory
contents of the target MC9S12DG256 including the bootloader. If it returns with a message “Flash
or EEPROM Failed To Erase” the MC9S12DG256 is defective.

Now we are going to program the bootloader and the D-Bug12 into the flash memory of the target
MC9S12DG256.

Before we actually program the flash memory, we must understand there are two different types of
s-record file that can be generated by compilers and assemblers.

An sl-record uses a 16-bit starting address field while an s2-record uses a 24-bit starting address
field.
An sl-record file looks like this:

S123FFAQOF64CF650F654F658F65CF660F664F668F66CF670F674F678F67CF680F684F6883D
S123FFCOF68CEF690F694F698F69CF6AOF6A4F6A8FOACF6BOF6B4AF6BSF6BCF6COF6C4F6C81D
S123FFEOF6CCEF6D0F6D4F6D8F6DCFO6EOF6E4F6ESFOECF6F0F6F4F6F8F6FCEF700F704F00009
S9030000FC

An s2-record file looks like this:

S2240FEFAODB70DB66DB5CDB52DB48DB3EDB34DB2ADB20DB1 6DBOCDBO2DAFS8DAEEDAE4DADA4 1
S2240FEFCODADODAC6DABCDAB2DAASDASEDA94DASADASODA76DA6CDDDODAG62DAS8DA4EDA4494
S2240FEFEODAO2DAOADAL12DA1ADA22DA2ADA32DA3ADIFADIF2DOAFDISADIDSEFOOEFO0EF0039
S9030000FC

We are not going to explain the s-record format here. If you would like to know more on the
subject, you can review the D-Bug12 reference guide on the CDROM (BD12RG4.PDF). It explains
the subject in great details. Right now, all you need to know is that an s1-record file must be
converted to an s2-record file before using the FLOAD command. The “FLOAD” command in the
D-Bug12 is for downloading an s2-record file.

Our Dragon12-Light bootloader is modified from the Motorola’s BootDP256.asm. We added our
modification to the original source code and the s record file is generated by the AsmIDE. It's an
s1-record file and we converted it into an s2-record file by using the following commands:

Sreccvt —m c0000 fffff 32 —of fO000 -0 Boot_ DR12_8MHz.s29 Boot DR12_8MHz.s19

Now we type “FLOAD” <Enter> at the prompt. Click the Build button, select the Download option,
and select the file named Boot_DR12P_8MHz.s29 located in the folder named “D-Bug12_Monitor
”. You should see the following on the terminal window when programming is done (when the
prompt “s>" appears):

18

S>fload <Enter>

*kk *% *% *kkkhkkkkkkkk *k% *% *kkkkk *kk

S>

Now we are going to program the D-Bug12 monitor into the flash memory. We need to type
“FLOAD” <Enter> at the prompt. Click the Build button, select the Download option, and select the
file named DBug12v32_DR12_light 8MHz located in the folder named “D-Bug12_Monitor”. You
should see the following on the terminal window when programming is done (when the prompt “s>"
appears):

S>fload <Enter>

* * kkkkkkkkkkkkkkkkk * kkkkkkkkkkkkkkkkkkkkkk *kkkkkkkk *
kkk
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkx
kkk
kkk
kkkhkkkkkkkkkkkkkkkkkkkkkkkkkx

kkk

* * khkkkkkkkkkkhkkhkkk * khkkkkkkkkkkhkkkkkhkkkk

S>

With the bootloader and the D-Bugl12 programmed in the flash memory, the target board now
becomes a true development board. That's how we program the board before we ship it. Your
Dragonl12-Light board actually becomes a programmer. You can then repeat above steps as many
times as you want. Just unplug the 6-pin BDM cable from the target board, and then plug it into a
new target board to program its flash memory with these two files. You even don’t have to turn off
the power while doing this.

For your convenience, we combined both the bootloader and the D-Bug12 monitor into a single s2
file named Boot_ DBug12v32 DR12_light 8MHz .s29. In case you need to update both of them,
you can download this combined file.

The D-Bugl2 monitor is an application program runs from the bootloader. If you program the D-
Bug12 portion of flash memory with your application program, your program will run automatically in
EVB mode after power up or reset. When running your code instead of the D-Bug12 monitor, the
bus speed is 4MHz, one half of the crystal frequency by default. The PLL function must be initialized
by your code for a higher bus speed, because the D-Bug12 monitor firmware was not in flash
memory anymore. For your convenience, we include a PLL code template in chapter 7.

If you need to auto start your code upon reset, the procedure is available in the folder named
flash_programming.

19

3.1.4 BOOTLOADER mode: PAD1=1, PADO=1

This bootloader allows you to erase/program flash memory and erase EEPROM. It is mainly used
to program the D-Bug12 monitor into flash memory or download a user’s fully debugged code into
the D-Bug12 portion of flash memory. The latter allows the board to be operated in EVB mode and
start your code every time the board is turned on or reset.

When you program your code into the D-Bug12 portion of flash memory, it wipes out the D-Bug12
monitor. You can restore it any time, just as if you were downloading another application program
since the bootloader is not erased. You can erase and program the D-Bug12 monitor portion of the
flash memory of the MC9S12DG256 on its own board in bootloader mode, but you cannot erase
and program bootloader by itself. The bootloader can only be erased by an external BDM via
BDM-in port.

After booting up in this mode, the LCD should display the following message:

“ DRAGON12-Light ”
“ BOOT LOADER ”

and you should see the following bootloader menu on PC screen:

MC9S12DG256 bootloader menu:
a) Erase Flash
b) Program Flash
c) SetBaud Rate
d) Erase EEPROM
2

The option a) will erase the D-Bug12 portion of flash memory, not the bootloader itself.
The option b) will program the D-Bug12 portion of flash memory, not the bootloader itself.

The file to be programmed into flash memory must be an s2-record file. If your assembler and
compiler generate s1-record files only, you must convert an s1-record file to an s2- record file before
programming flash memory with the bootloader.

The option c) will set a new baud rate.
The option d) will erase all on-chip EEPROM.

Note: Some users may accidentally erase the D-Bug12 monitor when entering this mode, so it is
important to know how to re-program the D-Bug12 monitor.

To program flash memory with the D-Bug12 monitor:

1. Enter the option a) to erase D-Bug12 portion of flash memory. Wait until the bootloader menu
re-appears after flash memory is erased.

2. Enter the option b), the bootloader will wait for your file. Do not type any thing on keyboard.

3. Click the Build button, select the Download option, and select the file named
DBug12v32_DR12_light_8MHz .s29 located in the folder named “D-Bug12_Monitor” for
downloading. You should see the following on the screen:

*kk *% *k% *hkhkkkkkhkkk *kk *% *kk *kkkkk * *

*kk *% *k% *hkhkkkkkhkkk *kk *% *kk *kkkkk * *

*kk *% *k% *hkhkhkkkhkkk *kk *% *kk *kkkk *kk *

khkkkkkkkkkhkkkkkhkkkkkkkkkkhkhkhkkkkhkhkkkhkkkkkhkkkkkkkkhkkkk *

*kkkk *kkkkkhkkkk

20

4. It will take 3 minutes to program the D-Bug12 at 9600 baud rate and the bootloader menu will
reappear after the D-Bug12 monitor is successfully programmed into flash memory.

3.2 Making a simple assembly program in RAM:

We are using AsmIDE as a terminal program and the following instructions to create your first assembly
program. If you are using a different terminal program, the instructions may vary.

The steps to create your first program are as follows:

1.

Click the File button to open a new file.
In assembly language, you specify the starting address of your CODE by an ORG statement.

You can start the data RAM at address $1000 with the statement org $1000 followed by RAM
variables, as shown by:

org $1000
count: rmb 1 ; reserve one byte of RAM for temp storage
temp: rmb 2 ; reserve two bytes of RAM for temp storage

If your program is small, say less than 4K, you can start your program at address $2000 with the
statement org $2000 followed by your program, as shown by:

org $2000

It will assemble your source program and generate hex code within 4K locations from $2000 to
$2FFF.

Here is a very simple program, but it's complete. It will flash the PBO LED at 2Hz when it's running.
The RAM byte named ‘counter’ is added for demonstrating how a RAM data byte is used in a user
program. In this simple program it's not really necessary, because the accumulator A can be used
as the RAM byte ‘counter’.

For a good programming practice, you should always place the Ids instruction in the first line of your
code.

#include reg9s12.h
REGBLK: equ $0000

STACK: equ $2000 ; do not use $4000
org $1000
counter: rmb 1
org $2000 ; program code
start: Ids #STACK

ldx #REGBLK

[daa #$ff

21

back:

*

d250ms:

delayl:
delay:

Staa
Staa
staa

clr
jsr
inc
jsr
jmp

Idaa
staa

Idy
dey
bne
dec
bne
rts

end

ddrb,x
ddrp,x
ptp,x

portb,x
d250ms
portb,x
d250ms
back

#250
counter

#6000
delay

counter
delayl

; make port B an output port
; make port P an output port
; turn off 7-segment LED display

; turn off PBO
; delay 250ms
; turn on PBO
; delay 250ms

; delay 250 ms

; 6000 x 4 = 24,000 cycles = 1ms
; this instruction takes 1 cycle
; this instruction takes 3 cycles

; not 250ms yet, delay again

2. Click File button, select Save option to save your assembly source file. Save your file frequently
while editing. If you are creating a new file and giving the file a name to save, enter the file name
including file extension, such as “Flash_PB0.asm”, not just “Flash_PB0”.

3. Click Build button, select Assemble option, or click the assembler button on the toolbar to assemble
your code and generate an s19 file. If the assembler detects an error, the error message will show
the line numbers of your source code that caused the error. You have to correct all errors in your

program.

4. Gotothe line and correct the errors and go back to step 3 until there are no errors.

5. Press the reset button on the board, you will see:

D-Bug12 v4.0.0b32

Copyright 1996 - 2005 Freescale Semiconductor
For Commands type "Help"

>

6. Type “LOAD” and then hit <Enter> key

7. Click Build button, select Download option and locate the file named ‘Flash PB0.s19” for

downloading. After download is done, type “G 2000” and hit <Enter> key to run the program.

For your convenience, we have included this sample program in the folder named “example”.

22

3.3 Software development

331

3.3.2

3.33

Use on-chip 12K RAM for software development in EVB mode.

You can download your s19 file into the RAM and debug it with the D-Bug12 monitor in EVB mode.
You must place your interrupt vectors at $3E00-$3E7F, because real interrupt vector addresses are
taken by the bootloader. The bootloader and the D-Bug12 monitor will redirect interrupts to the RAM
interrupt vector addresses at $3E00-$3E7F

Because RAM wiill lose its contents after power off, you have to load your program every time after
power-up. In the beginning of your program, you must initialize the interrupt vectors at $3E00-
$3E7F.

In all sample programs, the user program code locations are at $2000-$3FFF. The user data RAM
locations are at $1000-$1FFF. The 64 RAM interrupt vector addresses are at $3E00-$3E7F.

The 64 RAM interrupt vector addresses (128 bytes of RAM) are assigned by the D-Bug12 monitor
to different interrupt sources. The listing of interrupt sources is show on chapter 7.

Use on-chip 3K EEPROM for testing your code in EVB mode.

If your program is small enough to fit into a 3K range, then you can download your code into the
EEPROM. In this way, your program can be auto started from $0400 upon reset. You cannot set
software breakpoints and single step in the EEPROM in EVB mode, so it makes sense to do
development work in the RAM first. When your code is completely debugged, then re-assemble or
re-compile it at $0400 and download the final s19 file into the EEPROM for the auto start feature.
With the early versions of D-Bug12 monitor, an s19 file must be converted to an s29 file to program
the EEPROM, but it's not required in the current version.

Like the RAM-based development, your interrupt vectors are at $3E00-$3E7F. In the beginning of
your program, you must initialize the interrupt vectors at $3E00-$3E7F.

Program on-chip flash memory in BOOTLOADER mode.

In this mode, you download your program code directly into on-chip flash memory. You first erase
the D-Bug12 monitor portion of flash memory, and then program that portion of the flash memory by
downloading your application program code in an s29 file. Your program code will replace the D-
Bug12 monitor in the flash memory. The bootloader portion of the flash memory remains intact. To
run your code, set the mode switch SW 7 to EVB mode, then press the reset button. It usually runs
the D-Bug12 monitor, but now it runs your program. The flash memory is non-volatile like the
EEPROM. Your code will run every time the board is turned on or reset.

The bootloader redirects interrupts to the secondary interrupt vectors at $EF80-$EFFF. The D-
BUG12 is not present and the interrupt vectors of your program are at $EF80-$EFFF. The addresses
$EFFE and $EFFF contains the starting address of your program.

23

In order to program the MC9S12DG256 flash memory, you must program an even number of bytes
and begin on an even address boundary for each s-record. If any one s-record in the file contains
an odd number of bytes or begins with an odd address, the flash memory cannot be programmed.
If your assembler or compiler cannot generate the even format, you must use the Freescale s-record
conversion utility sreccvt.exe to convert your odd format to the even format by using the following
command line:

Sreccvt —m c0000 fffff 32 —of f0000 —o test.s29 test.s19

It will create a new file named test.s29 that has the even format and can be programmed into flash
memory. For your convenience, the sreccvt.exe is included in the folder named
CDROM\document\Sreccvt-GUL.

Chapter 4: Hardware Descriptions

The crystal frequency is 8 MHz and usually it will result in a 4 MHz bus speed, but on this board the
MC9S12DG256’s internal PLL boosts the bus speed up to 24 MHz.

The circuit is designed in such way that the value of all resistors and capacitors are not critical.
4.1 LEDs:

Each portB pin is monitored by a LED. In order to turn on port B LEDs, set the corresponding portB pin
high. On the Dragon12-Plus2, the PJ1 (pin 21 of the MC9S12DG256) must be programmed as output and
set for logic zero. That's not needed on this Dragon12-Light board.

4.2 DIP switch and pushbuttons:

Port H is connected to an 8-position DIP switch. The DIP switch is connected to VCC via the RN4 (four
2.7K resistors) and RN5 (four 2.7K resistors). To GND Via RN8 (four 47K resistors) and RN9 (four 47K
resistors), so it’s not dead short to VCC or GND. When port H is programmed as an output port, the DIP
switch setting is ignored, but for the best result all 8 DIP switches should be open (at the low positions).

4.3 7-Segment LED multiplexing

There are 4 digits of 7-segment LEDs on the Dragon12-Light board. The type of the 7-segment LED on
board is called common cathode. In an individual digit, all anodes are driven individually by an output pin
and all cathodes are internally connected together.

Before sending a number to a 7-segment LED, the number must be converted to its corresponding 7-
segment code depending on how the 7-segment display is connected to an output port.

The Dragon12-Light board uses port B to drive 7-segment anodes and uses PP0O-PP3 to drive common
cathodes. We will explain how to multiplex 7-segment by displaying the number 1234 on the display.

By convention, the 7segments are called segment A, B, C, D, E, F and G. Their locations in the display
are shown below:
24

KR d
—w| g [P
— /-
= =N,

Cathode |

The segment A, B, C, D, E, F, G and Decimal Point are driven by PBO, PB1, PB2, PB3, PB4, PB5, PB5

and PB7, respectively. The hex value of the segment code is shown in the following table:

Number |DP |G |F | E | D | C | B | A | Hex Value
1 0|0|jO0OlO|O|1]|1]|O0 $06
2 0O |1(0|l212|212|0|1|12 $5B
3 O|1|0l0|1]21|1]|1 $4F
4 0O |1|1/0|0|2|1]|0 $66

The schematic for multiplexing 4 digits is shown below. The two of the digits at the right are

deliberately placed upside down and the hardware connections compensate for this configuration.
The reason for the upside down digits is to place two decimal pointers on the middle as a colon for
a clock display.

COMMON CATHODE X%

DSR2

DSP1 DIG2

DIG3 D8P3

DIG1

& E

DEP4

DIGR

agg10349

a4AI0349

1
S|TISd|z1ie|@

1
[S|7 [Bla|z]1 {22

0| o] ol

PBE

PBT

o

RNS
158 X 4

The digit 3, 2, 1, and 0 are driven by PPO, PP1, PP2 and PP3, respectively. The 7-segment LED is
turned on one at a time at 250 Hz refresh rate. It's so fast that our eyes will perceive that all 4
digits are turned on at the same time. To display the number 1234 on the 7-segment display, the
following steps should be taken:

1. Output $06 to port B, set PPO low and PP1, PP2, and PP3 high. The number 1 is shown on
the digit 3 (the leftmost digit), but other 3 digits are turned off.

2. Delay 1ms.

3. Output $5B to port B, set PP1 low and PPO, PP2, and PP3 high. The number 2 is shown on
the digit 2, but other 3 digits are turned off.

4. Delay 1ms.

5. Output $4F to port B, set PP2 low and PPO, PP1, and PP3 high. The number 3 is shown on
the digit 1, but other 3 digits are turned off.

6. Delay 1ms.

7. Output $66 to port B, set PP3 low and PPO, PP1, and PP2 high. The number 4 is shown on
the digit O (the rightmost digit), but other 3 digits are turned off.

8. Delay 1ms.
9. Go back to step 1.
4.4 Keypad:

Port A is an 8-bit bi-directional port. Its primary usage is for a 4X4 keypad. If the port is not used for the

keypad, it can be used as a general-purpose 1/O port.

The schematic for the keypad connections is shown below:

PAO PAl PA2 PA3

Col 0 Col_1 Col_2 Col_3
PST PAOx
PS8 PAlX
PSS PA2x

PE&@ PA3X

KEY3

»—o/
l PE1 PRdx PA4, Row_0O

©

q

KEYE KEYT

l PE2 . PASH PA5, Row_1

KE;id]
"
KE;ii] KEY11
KEYld“
o
|

)

PE4__PATX PA7, Row_3

KE;l_l

ngs_i

KEY8 KE;E_1
KEY13u

~

h—4y// k—47//
| p63 pasx PAG6, Row_2
KEY12 KEY15
Lo~ I

KEYPADX

26

Keypad connections:
PAO connects COLO of the keypad
PA1 connects COL1 of the keypad
PA2 connects COL2 of the keypad
PA3 connects COL3 of the keypad
PA4 connects ROWO of the keypad
PA5 connects ROW1 of the keypad
PA6 connects ROW?2 of the keypad
PA7 connects ROW3 of the keypad

Keypad scan routine sets PA3 low and PAQ, PA1,PA2 high, then tests PA4-PA7.
If no key is down, PA4-PA7 remain high.
If PA7 = low, the key 15 is down.
If PA6 = low, the key 14 is down.
If PA5 = low, the key 13 is down.
If PA4 = low, the key 12 is down.

Keypad scan routine sets PA2 low and PAOQ, PA1, PA3 high, then tests PA4-PA7.
If no key is down, PA4-PA7 remain high.
If PA7 = low, the key 11 is down.
If PA6 = low, the key 10 is down.
If PA5 = low, the key 9 is down.
If PA4 = low, the key 8 is down.

Keypad scan routine sets PA1 low and PAO, PA2, PA3 high, then tests PA4-PA7.
If no key is down, PA4-PA7 remain high.
If PA7 = low, the key 7 is down.
If PA6 = low, the key 6 is down.
If PAS = low, the key 5 is down.
If PA4 = low, the key 4 is down.

Keypad scan routine sets PAQO low and PA1, PA2, PA3 high, then tests PA4-PA7.
If no key is down, PA4-PA7 remain high.
If PA7 = low, the key 3 is down.
If PA6 = low, the key 2 is down.
If PA5 = low, the key 1 is down.
If PA4 = low, the key 0 is down.

4.5 LCD display

Port K is an 8-bit bi-directional port. It's used for the LCD display module. If the port is not used for the

LCD display, it can be used as a general-purpose I/O port.

The pinouts of J11 are as follows:

Pin 1 GND

Pin 2 VCC (5V)

Pin 3 Connect to GND via the VR1 for contrast adjustment

Pin 4 PKO RS pin for LCD module
Pin 5 GND Write only for LCD module
Pin 6 PK1 EN pin for LCD module

Pin7 Not used

Pin 8 Not used

Pin 9 Not used
Pin 10 Mot used
Pin 11 PK2 DB4 pin for LCD module
Pin 12 PK3 DBS pin for LCD module
Pin 13 PK4 DB6 pin for LCD module
Pin 14 PK5 DB7 pin for LCD module

Pin 15 Via a 22 Ohm resistor to VCC LED backlight for LCD module
Pin 16 GND

Please notice that PK2-PK5 (not PK4-PK7) are used to drive DB4-DB7 of the LCD module.

The LCD module is hardwired for write-only operation.

4.6 Trimmer pot

The trimmer pot VR2 is connected to the ANO7 input of the ADC port.

4.7 Dual Digital-to-Analog Converters (DACs)

The on-board 2-ch, 10-bit DAC is installed for learning SPI communication. It convers a digital binary code
to an analog signal so a program can generate different waveforms from the DAC.

The DAC installed on the board is LTC1661. Its analog output, OUTA, is provided on the pin between the
headers H7 and H8. The other analog output, OUTB, is provided on the pin between the headers H1 and

H2. A good application is to connect a DAC output to an ADC input, so a user can send a binary code to
the DAC and read the code back from the ADC.

4.8 Speaker
The speaker is a 5V audio transducer and it can be driven by PT5, Output Comparator 3, or PP5 (PWM
5), or the output B of the DAC LTC1661. The jumper on J26 is preset for the PT5 at factory and all sample
programs on the CD will drive the speaker via PT5.

During reset, the bootloader or the serial monitor will generate a chirp via the speaker. If the jumper is not
installed for the PT5, the chirp won’t happen.

4.9 Dual SCl communication ports
The SCIO is used by D-Bug12 or serial monitor for developing and debugging user programs.
The SCI1 can be used by user’s application programs. It includes a TTL to USB chip for PC interface via

the USB jack P2. It also supports direct TTL interface with outher boards via J43 below the USB jack
P2.

28

4,10 External SPI interface

SPI port (J10) pinouts are as follows:

SPI port (J10) pinouts are as follows:

Pin1
Pin 3
Pin5

MISO (PS4) Pin2 VCC (5V)
SPSLK (PS6) Pin4 MOSI (PS5)
ISS (PS7) Pin6 VSS (GND)

4.11 External I°C interface

12C port (J2) pinouts are as follows:

Pin1l
Pin 3
Pin5

VCC (5V) Pin2 /IRQ
PJ7 (SCL) Pin4 PJ6(SDA)
VSS (GND)

4.12 RGB LED (Common Anode)

The anode is enabled by PM2.

RED COMMON
PP4 (O0—+«O|[ANODE
PM2

GREEN [O6 BO|BLUE
PP& PP5

The PP4, PP5 and PP6 control Red, Blue and Green LEDs, respectively.

4.13 All jumper settings

All on-board jumpers:

Ji
J2

J6
J7
J8
J9
J10
J11

Enables LCD backlight
12C interface

PP4 PWM output for a servo, the servo connector must be installed horizontally
PP5 PWM output for a servo, the servo connector must be installed horizontally
PP6 PWM output for a servo, the servo connector must be installed horizontally
PP7 PWM output for a servo, the servo connector must be installed horizontally
SPI connector, 6-pin

On-board LCD connector for a 16x2 LCD

29

J13

J16

J20
J21

J25

J26

J34
J35

J36

J39

J43

J49

J50

J57

J58

J62

RS of CANO (U2), is hard-wired to VSS. (Located on solder side)
Connects SQW of the DS1307 to /IRQ. It's not connected. (Located on solder side)

BDM input
BDM output, when the board is booted in POD mode

DC motor power select. The jumper is installed on the two left pins if motors are powered by
the on-board unregulated 9V (VIN). The jumper is installed on the two right pins if motors are
powered by external voltage source that is lass than 15V at the terminal block T3. Unfortunatly
the labels are mistakenly swapped. It will be corrected in the revision B.

Selects speaker driving source. The speaker can be driven by PT5 (OC3), PP5 (PWM) and
DAC B

Servo motor power select. The jumper is installed on the two left pins if servos are powered
by the on-board VCC (5V). The jumper is installed on the two right pins if servos are powered
by an external 5V power supply at the terminal block T7

X-Y-X Accelerometer module interface

Connects PMO to RXD of CAN interface U2, It's hard-wired. (Located on solder side)

TTL logic level of the SCI1 for user application. |

Connects VRH to VDDA, it's hard-wired. (Located on solder side)
If a different voltage level is needed for the VRH, cut this jumper and solder a wire from VRH
pin to whatever voltage, such as 2.5V from the VDD2

External 3V battery backup volatage for the Real Time Clock, U11(DS1307). The RTC is
backed up by a large capacitor without a battery. If the capacitor is fully charged (after the
board being turned on for 12 hours) it will normally keep the RTC running at least two
weeks when the power is turned off. If that's not long enough an external 3V battery backup
is recommended

Analog sensor input 1 and can be used for an IR distance sensor, such as GP2D12 or other
ananlog or digital sensors
Analog sensor input 2 and can be used for an IR distance sensor, such as GP2D12 or other
ananlog or digital sensors

Provides VCC to the H-Bridge motor control IC, U12 (TB6612FNG). It's hard-wired (Located

on solder side). In case the U12 is damaged, VCC and VSS may be internally shorted, by
cutting this jumper the board may be able to work again without the H-Bridge.

30

Chapter 5: CodeWarrior and Serial monitor

CodeWarrior is a very powerful and professional IDE. The main feature of CodeWarrior IDE is the source level
debugger in assembler and C. CodeWarrior Special Edition is a wonderful gift from Freescale to all of us and
it's free for educational use. What's more, by CodeWarrior supporting serial monitor, they have made it very
affordable to support CodeWarrior for OEMs.

Freescale has invested millions of dollar into CodeWarrior and the current versions work very well. Freescale
knows they will never sell enough copies of CodeWarrior to make back what they have invested. They did it to
drive chip sales.

As a software developer, the first thing you look at is available tools and what it will cost.
There are many companies making MCU chips these days and for the most part they all have about the same
features at a similar price. Special Edition CodeWarrior sets Freescale apart from others.

CodeWarrior IDE does not work with D-Bug12, but it works with serial monitor. Before Freescale created the
serial monitor a BDM is needed as an interface between the PC and HCS12. Freescale created the serial
monitor for working with CodeWarrior to eliminate the cost of a BDM.

Now a student can use the serial monitor with CodeWarrior to debug his program and in fact, many
universities have been using the serial monitor with CodeWarrior without a BDM in their classrooms.

Without spending money on a BDM, a student will be able to spend his savings on purchasing a more
advanced trainer, like the Dragon12-Light board with many on-board peripherals. Purchasing an EVB board
that comes with a BDM at a reasonable price, most likely leaves the student with an EVB of only

limited functionality.

Some universities use D-Bug12 monitor first, then replace the D-Bug12 monitor with serial monitor to be used
with CodeWarrior IDE later. In this case, a school laboratory only needs to have one BDM or use one Dragon12-
Light board as a BDM POD, to program all students' boards with serial monitor.

To replace bootloader and D-Bug12 monitor with serial monitor, you need a BDM or a BDM POD to perform the
task. The procedure to program the on-chip flash memory is shown at:

http://www.evbplus.com/freescale _usbdm osbdm/usbdm_osbdm bdm_multilink.html

Some universities use CodeWarrior IDE only. In this case, we pre-load the on-chip flash memory with serial
monitor.

For more information on CodeWarrior please visit:

http://www.evbplus.com/Code Warrior _hcs12.html

31

http://www.evbplus.com/freescale_usbdm_osbdm/usbdm_osbdm_bdm_multilink.html
http://www.evbplus.com/Code_Warrior_hcs12.html

Chapter 6: PLL code

; The crystal frequency on the Dragon12-Light board is 8 MHz so the default bus speed is
;4 MHz. In order to set the bus speed high than 4 MHz the PLL must be initialized.

; You can cut and paste the following code to the beginning of your program.
; The math used to set the PLL frequency is:

; PLLCLK = CrystalFreq * 2 * (initSYNR+1) / (initREFDV+1)

; CrystalFreq= 8 MHz on Dragon12-Light board
; iNtSYNR = 5, PLL multiplier will be 6
; intREFDV = 1, PLL divisor will be 2

; PLLCLK = 8*2*6/2 = 48MHz
; The bus speed = PLLCLK / 2 =24 MHz

;Assembly code

start: ; PLL code for 24MHz bus speed from a 4/8/16 crystal
sei
[dx #0
bclr clksel,x,%10000000 ; Clear bit 7, clock derived from oscclk
bset plictl,x, %01000000 ; Turn PLL on, bit 6 =1 PLL on, bit 6=0 PLL off
[daa #3$05 ; 5+1=6 multiplier

staa synr,x

; Idaa #303 ; divisor=3+1=4, 16*2*6 /4 = 48MHz PLL freq, for 16 MHz crystal
[daa #3$01 ;divisor=1+1=2, 8*2*6 /2 = 48MHz PLL freq, for 8 MHz crystal

; [daa #3$00 ;divisor=0+1=1, 4*2*6 /1 = 48MHz PLL freq, for 4 MHz crystal

staa refdv,x
wait_b3: brclr crgflg,x, 600001000 wait_b3 ; Wait until bit 3=1
bset clksel,x, %10000000

/* C code */
void set_clock_24mhz(void)

CLKSEL &= Ox7F;
PLLCTL |= 0x40;
SYNR = 0x05;
REFDV = 0x01,

/* REFDV=0x00; for 4 MHz */
/* REFDV=0x01; for 8 MHz */
/* REFDV=0x03; for 16 MHz */

while(!(0x08 & CRGFLG));
CLKSEL |= 0x80;

}

32

Chapter 7: Appendix

7.1 D-Bugl2 utility routines

The AN1280 was written for OLD 68HC12 family. If you happen to use printf routine with your old
68HC12 board you should be aware that I/O utility routines are moved to different addresses in D-Bug12

V4 .x.

The address for the printf is SEE88 and addresses of other I/O routines are listed below:

Function Description

far main()

getchar() |
putchar() | Senda character out SCIQ or SCII

et a character from SCIO or SCI1

printf() Formatted Qutput - Translates binary values to characters

far GetCmdLine() | Obtain a line of input from the user

far sscanhex() iConvertan ASCII hexadecimal string to a binary integer

isxdigit() ;'Chccks for membership in the set [0..9,a.f, A.F] i

toupper() onverts lower case characters to upper case

hecks for membership in the set [a..z, A.Z]

isalpha()

strepy()
far out2hex()

opies a null terminated string.

far outdhex()

SetUserVector() i
far WriteEEByte() Write adatabytetoon-chip EEPROM
Bulk erase on-chip EEPROM

etup user interrupt service routine

far EraseEE() .

far ReadMem() B 0
far WriteMem() | Write data to the M68HC12 memory map

‘Startof D-Bugl2

eturns the length of a null terminated string 1

isplays 16-bit number as 4 ASCII hex characters .

1 the M6BHC12 memory map

| Pointer Address
$EE8S0

'$EES4

. BEEB6

SEE88
~ $EEBA
_ SEE8E

$EE94
$EE98

$EE9A

$EEA4

$EEA6

$EEAE
$EEB2

SEE92

__SEE%

- $EE9C
$EEAO .

. SEEAA

Fig 8-1: D-Bug12 utility routines

33

7.2 Interrupt vector table

Table 5-1 Interrupt Vector Locations

Vector Address Interrupt Source ﬁgsr‘;‘ Local Enable H&Réiyaatl:e
$FFFE, $FFFF Reset None None -
$FFFC, $FFFD Clock Monitor fail reset None PLLCTL {CME, SCME) -
$FFFA, $FFFB COP failure reset None COP rate select -
$FFF8, $FFF9 Unimplemented instruction trap None None -
$FFF6, $FFF7 SwWi None None -
$FFF4, $FFF5 XIRQ X-Bit None -
$FFF2, $FFF3 IRQ I-Bit IRQCR (IRQEN) $F2
$FFFO, $FFF1 Real Time Interrupt I-Bit CRGINT (RTIE) $FO
$FFEE, $FFEF Enhanced Capture Timer channel 0 I-Bit TIE (COl) $EE
$FFEC, $FFED Enhanced Capture Timer channel 1 I-Bit TIE (C11) $EC
$FFEA, SFFEB Enhanced Capture Timer channel 2 I-Bit TIE (C2I) $EA
$FFES8, $FFE9 Enhanced Capture Timer channel 3 I-Bit TIE (C31) $E8
$FFES, $FFE7 Enhanced Capture Timer channel 4 I-Bit TIE (C41) $EB
$FFE4, $FFE5 Enhanced Capture Timer channel 5 I-Bit TIE (C51) $E4
$FFE2, $FFE3 Enhanced Capture Timer channel 6 I-Bit TIE (C6l) $E2
$FFEOQ, $FFET1 Enhanced Capture Timer channel 7 I-Bit TIE {(C71) $EO
$FFDE, $FFDF Enhanced Capture Timer overflow I-Bit TSRC2 (TOF) $DE
$FFDC, $FFDD Pulse accumulator A overflow 1-Bit PACTL (PAOVI) $DC
$FFDA, $FFDB Pulse accumulator input edge I-Bit PACTL (PAI) $DA
$FFD8, $FFD9 SPIO 1-Bit SPOCR1 (SPIE, SPTIE) $D8
SFFDS, $FFD7 sClo MBI | e Tor Rie, ILE) $D6
$FFD4, $FFD5 sci Bt | e T%?QCSZE L) $D4
$FFD2, $FFD3 ATDO 1-Bit ATDOCTL2 (ASCIE) $D2
$FFDO, $FFD1 ATD1 I-Bit ATD1CTL2 (ASCIE) $D0
$FFCE, $FFCF Port J I-Bit PTJIF (PTJIE) $CE
$FFCC, $FFCD Port H I-Bit PTHIF(PTHIE) $CC
$FFCA, SFFCB Modulus Down Counter underflow I-Bit MCCTL(MCZI) $CA

Fig 8-2: MC9S12DG256 Interrupt vector table 1

34

$FFC8, $FFC9 Pulse Accumulator B Overflow I-Bit PBCTL(PBOVI) $C8
$FFC8, $FFC7 CRG PLL lock I-Bit CRGINT{LOCKIE) $C6
$FFC4, $FFC5H CRG Self Clock Mode I-Bit CRGINT (SCMIE) $C4
$FFC2, $FFC3 BDLC I-Bit DLCBCR1(IE) $C2
$FFCO, $FFC1 IIC Bus I-Bit IBCR (IBIE) $CO0
$FFBE, $FFBF SPI1 I-Bit SP1CR1 (SPIE, SPTIE) $BE
$FFBC, $FFBD SPI2 I-Bit SP2CR1 (SPIE, SPTIE) $BC
$FFBA, $FFBB EEPROM I-Bit EECTL(CCIE, CBEIE) $BA
$FFB8, $FFB9 FLASH I-Bit FCTL(CCIE, CBEIE) $B8
$FFB6, $FFB7 CANO wake-up 1-Bit CANORIER (WUPIE) $B6
$FFB4, $FFB5 CANO errors I-Bit | CANORIER (CSCIE, OVRIE) $B4
$FFB2, $FFB3 CANO receive 1-Bit CANORIER (RXFIE) $B2
$FFBO, $FFB1 CANO transmit I-Bit | CANOTIER (TXEIE2-TXEIEQ) $B0
$FFAE, $FFAF CAN1 wake-up I-Bit CAN1RIER (WUPIE) SAE
$FFAC, $FFAD CAN?1 errors I-Bit | CAN1RIER (CSCIE, OVRIE) $AC
$FFAA, $SFFAB CAN1 receive I-Bit CAN1RIER (RXFIE) FAA
$FFA8, $FFA9 CAN1 transmit I-Bit | CAN1TTIER (TXEIE2-TXEIEQ) $A8
$FFAB, $FFA7 CAN2 wake-up I-Bit CANZRIER (WUPIE) $A6
$FFA4, SFFAS CAN2 errors I-Bit | CAN2ZRIER (CSCIE, OVRIE) $A4
$FFA2, $FFA3 CAN2 receive I-Bit CANZ2RIER (RXFIE) $A2
$FFAD, $FFA1 CAN2 transmit I-Bit | CAN2TIER (TXEIE2-TXEIEO) $A0
$FFOE, $FFOF CAN3 wake-up I-Bit CAN3RIER (WUPIE) $9E
$FF9C, $FFOD CAN3 errors I-Bit | CAN3RIER (TXEIE2-TXEIEQ) $9C
$FFOA, $FF9B CAN3 receive I-Bit CAN3RIER (RXFIE) $9A
$FF98, $FF99 CANS3 transmit I-Bit | CAN3TIER (TXEIE2-TXEIED) $98
$FF96, $FF97 CAN4 wake-up I-Bit CAN4RIER (WUPIE) $96
$FF94, $FF95 CAN4 errors I-Bit | CAN4RIER (CSCIE, OVRIE) $94
$FF92, $FF93 CAN4 receive I-Bit CAN4RIER (RXFIE) $92
$FF90, $FF91 CAN4 transmit I-Bit | CAN4TIER (TXEIE2-TXEIED) $90
$FF8E, $FF8F Port P Interrupt I-Bit PTPIF (PTPIE) $8E
$FF8C, $FF8D PWM Emergency Shutdown I-Bit PWMSDN (PWMIE) $8C
g:z:zgg to Reserved

Fig 8-3: MC9S12DG256 Interrupt vector table 2

35

Secondary Secondary

Interrupt Source Vector Interrupt Source Vector
Address Address

Reserved $FF80 $EF80 1°C bus $EFCO
Reserved $FF82 $EF82 DLC $EFC2
Reserved $FF84 $EF84 SCME $EFC4
Reserved $FF86 $EF86 CRG lock $EFC6
Reserved $FF88 $EF88 Pulse accumulator B overflow $EFC8
Reserved $FF8A $EF8A Modulus down counter underflow $EFCA
PWM emergency shutdown $EF8C Port H interrupt $SEFCC
Port P interrupt $EFSE Port J interrupt $EFCE
MSCAN 4 transmit $EF90 ATD1 $EFDO
MSCAN 4 receive $EF92 ATDO $EFD2
MSCAN 4 errors $EF94 SCll $SEFD4
MSCAN 4 wakeup $EF96 SCI0 $SEFD6
MSCAN 3 transmit $EF98 SPIO $EFD8
MSCAN 3 receive $EF9A Pulse accumulator A input edge $SEFDA
MSCAN 3 errors $EF9C Pulse accumulator A overflow $SEFDC
MSCAN 3 wakeup $EF9E Timer overflow $EFDE
MSCAN 2 transmit $EFAO Timer channel 7 $EFEO
MSCAN 2 receive $EFA2 Timer channel 6 $EFE2
MSCAN 2 errors SEFA4 Timer channel 5 $EFE4
MSCAN 2 wakeup $EFAB Timer channel 4 $EFE6
MSCAN 1 transmit $EFA8 Timer channel 3 $EFE8
MSCAN 1 receive SEFAA Timer channel 2 $EFEA
MSCAN 1 errors $EFAC Timer channel 1 $EFEC
MSCAN 1 wakeup $EFAE Timer channel 0 $EFEE
MSCAN 0 transmit $EFBO Real-time interrupt $EFFO
MSCAN 0 receive $EFB2 IRQ $EFF2
MSCAN 0 errors $EFB4 XIRQ $EFF4
MSCAN 0 wakeup $EFB6 SWi $EFF6
FLASH $EFBS8 Unimplemented instruction trap $EFF8
EEPROM $EFBA COP failure reset $EFFA
SPI2 $EFBC Clock monitor fail reset $EFFC
SPI $EFBE Reset $EFFE

Fig 8-4: MC9S12DG256 secondary interrupt vector table

36

Revision: 1.00 04/2014

Revision: 1.01 02/2015 PortB LED's are controlled by portB, regardless of the state of the PJ1.

37

